Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(4): 3328-3341, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666938

RESUMEN

Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-ß-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 µg/mL and 10 µg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.

2.
Med Sci Monit ; 30: e942899, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38509819

RESUMEN

BACKGROUND The gut microbial metabolites demonstrate significant activity against metabolic diseases including osteoporosis (OP) and obesity, but active compounds, targets, and mechanisms have not been fully identified. Hence, the current investigation explored the mechanisms of active metabolites and targets against OP and obesity by using network pharmacology approaches. MATERIAL AND METHODS The gutMGene database was used to collect gut microbial targets-associated metabolites; DisGeNET and OMIM databases were used to identify targets relevant to OP and obesity. A total of 63 and 89 overlapped targets were considered the final OP and obesity targets after creating a Venn diagram of metabolites-related targets and disease-related targets. Furthermore, the top 20% of degrees, betweenness, and closeness were used to form the sub-network of protein-protein interaction of these targets. Finally, the biotransformation-increased receptors and biological mechanisms were identified and validated using ADMET properties analysis, molecular docking, and molecular dynamic simulation. RESULTS GO, KEGG pathway analysis, and protein-protein interactions were performed to establish metabolites and target networks. According to the enrichment analysis, OP and obesity are highly linked to the lipid and atherosclerosis pathways. Moreover, ADMET analysis depicts that the major metabolites have drug-likeliness activity and no or less toxicity. Following that, the molecular docking studies showed that compound K and TP53 target have a remarkable negative affinity (-8.0 kcal/mol) among all metabolites and targets for both diseases. Finally, the conformity of compound K against the targeted protein TP53 was validated by 250ns MD simulation. CONCLUSIONS Therefore, we summarized that compound K can regulate TP53 and could be developed as a therapy option for OP and obesity.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ginsenósidos , Osteoporosis , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Biología Computacional , Simulación de Dinámica Molecular , Obesidad/tratamiento farmacológico , Osteoporosis/tratamiento farmacológico
3.
Curr Issues Mol Biol ; 46(3): 2320-2342, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38534764

RESUMEN

Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.

4.
Arch Microbiol ; 206(4): 137, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436734

RESUMEN

Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Colorrectales , Neoplasias Pulmonares , Adulto , Humanos , Neoplasias Pulmonares/prevención & control , Ácidos Grasos Volátiles , Butiratos , Neoplasias Colorrectales/prevención & control
5.
Microbiol Res ; 281: 127595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38218095

RESUMEN

Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. Genetics, environment, and defects in the skin barrier are only a few of the factors that influence how the disease develops. As human microbiota research has advanced, more scientific evidence has shown the critical involvement of the gut and skin bacteria in the pathogenesis of atopic dermatitis. Microbiome dysbiosis, defined by changed diversity and composition, as well as the development of pathobionts, has been identified as a potential cause for recurring episodes of atopic dermatitis. Gut dysbiosis causes "leaky gut syndrome" by disrupting the epithelial lining of the gut, which allows bacteria and other endotoxins to enter the bloodstream and cause inflammation. The same is true for the disruption of cutaneous homeostasis caused by skin dysbiosis, which enables bacteria and other pathogens to reach deeper skin layers or even systemic circulation, resulting in inflammation. Furthermore, it is now recognized that the gut and skin microbiota releases both beneficial and toxic metabolites. Here, this review covers a range of topics related to AD, including its pathophysiology, the microbiota-AD connection, commonly used treatments, and the significance of metabolomics in AD prevention, treatment, and management, recognizing its potential in providing valuable insights into the disease.


Asunto(s)
Dermatitis Atópica , Microbiota , Niño , Humanos , Dermatitis Atópica/etiología , Dermatitis Atópica/patología , Dermatitis Atópica/terapia , Disbiosis , Piel/microbiología , Inflamación , Metaboloma
6.
J Biomol Struct Dyn ; 42(6): 3145-3165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37227775

RESUMEN

A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50  = 6.58-17.98 µM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Quinazolinonas/farmacología , Células HEK293 , Simulación de Dinámica Molecular
7.
Biomolecules ; 13(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002360

RESUMEN

(1) Background: A large and diverse microbial population exists in the human intestinal tract, which supports gut homeostasis and the health of the host. Short-chain fatty acid (SCFA)-secreting microbes also generate several metabolites with favorable regulatory effects on various malignancies and immunological inflammations. The involvement of intestinal SCFAs in kidney diseases, such as various kidney malignancies and inflammations, has emerged as a fascinating area of study in recent years. However, the mechanisms of SCFAs and other metabolites produced by SCFA-producing bacteria against kidney cancer and inflammation have not yet been investigated. (2) Methods: We considered 177 different SCFA-producing microbial species and 114 metabolites from the gutMgene database. Further, we used different online-based database platforms to predict 1890 gene targets associated with metabolites. Moreover, DisGeNET, OMIM, and Genecard databases were used to consider 13,104 disease-related gene targets. We used a Venn diagram and various protein-protein interactions (PPIs), KEGG pathways, and GO analyses for the functional analysis of gene targets. Moreover, the subnetwork of protein-protein interactions (through string and cytoscape platforms) was used to select the top 20% of gene targets through degree centrality, betweenness centrality, and closeness centrality. To screen the possible candidate compounds, we performed an analysis of the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of metabolites and then found the best binding affinity using molecular docking simulation. (3) Results: Finally, we found the key gene targets that interact with suitable compounds and function against kidney cancer and inflammation, such as MTOR (with glycocholic acid), PIK3CA (with 11-methoxycurvularin, glycocholic acid, and isoquercitrin), IL6 (with isoquercitrin), PTGS2 (with isoquercitrin), and IGF1R (with 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, isoquercitrin), showed a lower binding affinity. (4) Conclusions: This study provides evidence to support the positive effects of SCFA-producing microbial metabolites that function against kidney cancer and inflammation and makes integrative research proposals that may be used to guide future studies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Inflamación , Ácido Glicocólico
8.
Int Immunopharmacol ; 118: 110018, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989894

RESUMEN

Tuft cells, also known as taste chemosensory cells, accumulate during parasite colonization or infection and have powerful immunomodulatory effects on substances that could be detrimental, as well as possible anti-inflammatory or antibacterial effects. Tuft cells are the primary source of interleukin (IL)-25. They trigger extra Innate lymphoid type-2 cells (ILC2) in the intestinal lamina propria to create cytokines (type 2); for instance, IL-13, which leads to an increase in IL-25. As tuft cells can produce biological effector molecules, such as IL-25 and eicosanoids involved in allergy (for example, cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. Following parasite infection, tuft cells require transient receptor potential cation channel subfamily M member 5 (TRPM5)-dependent chemosensation to produce responses. Secretory tuft cells provide a physical mucus barrier against the external environment and therefore have vital defensive roles against diseases by supporting tissue maintenance and repair. In addition to recent research on tuft cells, more studies are required to understand the distribution, cell turnover, molecular characteristics, responses in various species, involvement in immunological function across tissues, and most importantly, the mechanism involved in the control of various diseases.


Asunto(s)
Inmunidad Innata , Linfocitos , Mucosa Intestinal , Citocinas , Interleucina-13
9.
Microbiol Res ; 271: 127346, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36921399

RESUMEN

The gut microbiome is the community of healthy, and infectious organisms in the gut and its interaction in the host gut intestine (GI) environment. The balance of microbial richness with beneficial microbes is very important to perform healthy body functions like digesting food, controlling metabolism, and precise immune function. Alternately, this microbial dysbiosis occurs due to changes in the physiochemical condition, substrate avidity, and drugs. Moreover, various categories of diet such as "plant-based", "animal-based", "western", "mediterranean", and various drugs (antibiotic and common drugs) also contribute to maintaining microbial flora inside the gut. The imbalance (dysbiosis) in the microbiota of the GI tract can cause several disorders (such as diabetes, obesity, cancer, inflammation, and so on). Recently, the major interest is to use prebiotic, probiotic, postbiotic, and herbal supplements to balance such microbial community in the GI tract. But, there has still a large gap in understanding the microbiome function, and its relation to the host diet, drugs, and herbal supplements to maintain the healthy life of the host. So, the present review is about the updates on the microbiome concerns related to diet, drug, and herbal supplements, and also gives research evidence to improve our daily habits regarding diet, drugs, and herbal supplements. Because our regular dietary plan and traditional herbal supplements can improve our health by balancing the bacteria in our gut.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Disbiosis/microbiología , Suplementos Dietéticos , Obesidad/microbiología
10.
ACS Omega ; 7(38): 34583-34598, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188265

RESUMEN

A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered 3-methyl-1-phenyl-2-pyrazoline-5-one in excellent yield. This reaction shows high functional group tolerance and provides a cost-effective and catalyst-free protocol for the quick synthesis of biologically active compounds from readily available substrates. Synthesized compounds were characterized by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and single-crystal XRD analysis. All the synthesized compounds were evaluated for their antiproliferative activities against a panel of five different human cancer cell lines and compared with Tamoxifen using MTT assay. Compound 3m exhibited maximum antiproliferative activity and was found to be more active as compared to Tamoxifen against both the MCF-7 and MDA-MB-231 cell lines with an IC50 of 5.45 and 9.47 µM, respectively. A molecular docking study with respect to COVID-19 main protease (Mpro) (PDB ID: 6LU7) has also been carried out which shows comparatively high binding affinity of compounds 3f and 3g (-8.3 and -8.8 Kcal/mole, respectively) than few reported drugs such as ritonavir, remdesivir, ribacvirin, favipiravir, hydroxychloroquine, chloroquine, and olsaltamivir. Hence, it reveals the possibility of these compounds to be used as effective COVID-19 inhibitors.

11.
ACS Omega ; 7(16): 13870-13877, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35559154

RESUMEN

Clopamide (CPD, 1) is a piperidine and sulfamoylbenzamide-based diuretic drug and a potential photosensitizing sulfonamide; its phototransformation was investigated using N,N-dimethylaniline (DMA) as an electron donor and 1,4-dicyanonaphthalene (DCN) as an electron acceptor in an immersion-well-type photochemical reactor fitted with a medium-pressure mercury vapor lamp (450 W). Photodegradation of the drug Clopamide resulted in two significant products via photoinduced electron transfer. Structures of these products were deduced from their 1H NMR, 13C NMR, mass, and IR spectra. The photoproducts are 2- choloro-5-((2,6-dimethylpiperidin-1-yl)carbamoyl)benzenesulfonic acid (2) and 4-hydroxy-N-(2,6-dimethyl-1-piperidyl)-3-sulfamoyl benzamide (3). In addition to this, the comparative antioxidant potentials of the parent drug and its photoproducts were investigated using in silico molecular docking against tyrosinase in order to better understand the in vivo relevance of pharmacological action of the drug as a result of light-drug interactions. UV light has been observed to modify substituents on the benzene ring, hence loss of biological activity at the time of storage and in vivo cannot be ruled out. This suggests that Clopamide users should avoid light (natural or artificial) exposure to prevent from drug-induced photosensitivity.

12.
ACS Omega ; 6(45): 30834-30840, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34805712

RESUMEN

Quetiapine (QTP) (1), a psychotropic agent belonging to a chemical class, dibenzothiazepine derivatives, is photosensitive and photolabile. Its photochemistry was studied in the presence of an electron donor N,N-dimethylaniline (DMA) and an electron acceptor 1,4-dicyanobenzene (DCB) under anaerobic conditions. This resulted in photoinduced electron transfer-mediated transformation of drug QTP. Irradiation of Quetiapine (QTP, 1) in the presence of electron donor N,N-dimethylaniline (DMA) under anaerobic conditions in a photochemical reactor afforded one major photoproduct 2 when irradiation of QTP (1) was carried out in the presence of electron acceptor 1,4-dicyanobenzene (DCB) under similar conditions; it afforded 3 as a major photoproduct. These photoproducts were isolated and characterized on the basis of their spectral (IR, UV, 1H NMR, 13C NMR, and mass spectra) studies. The photophysical properties of Quetiapine were also determined in several solvents to investigate the relevance of the molecular structure in their photophysics and consequently in their photochemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...